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Mass Transfer 
B.Vishali , G.Sarojamma 

 
Abstract - The combined effect of magnetic field and irreversible boundary reaction on dispersion in Newtonian  fluid 
through a conduit (pipe/channel) is studied by using generalized dispersion model. The study explains the 
development of dispersive transport following the injection of a tracer in terms of three effective transport coefficients 
namely exchange, convective and dispersion coefficients. The absorption coefficient is seen to be independent of 
magnetic field. The convection coefficient is influenced by the magnetic field. 
Index Terms - Generalized Dispersion model, Newtonian fluid, magnetic field, dispersion coefficient, interphase 
mass transfer. 

——————————      —————————— 
 

1 INTRODUCTION 
The study of absorption of a dispersing tracer at  
flow boundaries has many applications in 
biology, physiology, chromatography, chemical 
engineering, and environmental fluid mechanics. 
In the process of exchange of respiratory gas 
between body and its surroundings, the inspired 
air gets heated to body temperature and 
humidified to saturation on its way through the 
lung. This process and the removal of noxious 
gases or particulate material involve mass 
transfer between air stream and the walls of the 
respiratory tract. Gaseous dispersion takes place 
with chemical reaction in a wide variety of 
problems. 
Gupta and Gupta (1972) analysed the problem of 
dispersion of reactive contaminants in a liquid 
flowing through a channel in the presence of a 
first order homogeneous chemical reaction using 
Taylor’s theory for asymptotically large time and 
arrived at erraneous results in view of their quasi 
static assumptions. Sankarasubramanian and Gill 
(1973) investigated the phenomenon of 
dispersion with interphase mass transport in a 
Poiseuille flow through a circular tube. It was 
shown that the interphase mass transfer has an 
influence on the transport coefficients viz., 
exchange, convection, and diffusion coefficients. 
De Gance and Johns (1978a, b, 1980) extended 
the analysis of  
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Sankarasubramanian and Gill (1973) to 
the case of a cylinder with arbitrary cross-section. 
They have shown that the transport coefficients 
were function of time and also established the full 
dependence of the dispersion coefficients on 
time, the initial solute distribution and the 
chemical activity of the solute. 

 
Davidson and Schroter (1983) studied 

the dispersion and uptake of an inhaled slug of 
tissue soluble gas with in a broanchial wall as an 
assembly of straight rigid tubes with absorbing 
wall of finite thickness. Boddington and Clifford 
(1983) investigated the solute transport with 
chemical reaction, adsorption and disorption on 
the wall. Smith (1983) developed a delay 
diffusion model to study the effect of boundary 
absorption upon longitudinal dispersion in shear 
flows. The Taylor’s model based on the average 
concentration measured on the cross-section to 
analyse the asymptotic dispersion process has a 
major set back when the tracer is chemically 
reactive. The removals of the chemically active 
solutes near the boundary moving slowly are to 
be left behind as an extended tail. As a 
consequence, skewness towards the rear in the 
concentration profile was noticed (Chatwin  

1970, Smith 1983, Purnama 1988). This 
characteristic was not found through Taylor’s 
model. Lungu and Moffat (1982) investigated the 
effect of wall conductance on heat diffusion 
using Fourier transformations. The effective 
diffusivity in the flow direction was a decreasing 
function of the wall conductance and the total 
rate of decrease of mass through the wall was 
shown to be independent of the velocity. 

Taylor’s method (1953) was 
generalized by Purnama (1988) to analyse the 
dispersion of a contaminant in the presence of 
boundary reaction. It was shown that the shear 
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dispersion coefficient was increased by the 
presence of boundary retention. Balasubramanian 
et al. (1997) investigated the weak absorption at 
the boundary of a curved tube and showed that 
the dispersion mechanism was enhanced due to 
the weak losses at the flow boundary and the 
effect of secondary flows was to create a 
considerable drop in the dispersion coefficients 
corresponding to the case of straight tube. In their 
subsequent study (1999, 2003) they analysed the 
effects of secondary flows and boundary reaction 
on the dispersion using the generalized dispersion 
model of Sankarasubramanian and Gill 
(1973).The phenomenon of axial dispersion in 
pulsatile flow in a pipe with boundary absorption 
was studied numerically by Mazumdar and Das 
(1992). They showed that the mixing of the                  
cross-sectionally integrated concentration of 
contaminant molecules was effected by the 
heterogeneous wall reaction. It was also observed 
that the dispersion coefficient asymptotically 
reached stationary state after a certain time and it 
decreased with absorption parameter. 

Phillips et al. (1995) investigated the 
transport of a tracer substance through a wall 
layer consisting of tube containing flowing fluid 
surrounded by a wall layer in which the tracer 
was soluble. They showed that effective 
convection and dispersion coefficients based on 
the spatial moments were of little use in 
predicting the time-varying concentration at a 
fixed position as the spatial concentration profile 
became Gaussian only over the larger time scale 
i.e., when the tracer molecules took much longer 
time to diffuse across the wall layer than across 
the interior of the tube. Jayaraman et al. (1998) 
extended the model of Davidson and Schroter 
(1983) for the dispersion of solute in a fluid 
flowing through a curved tube with absorbing 
walls by using a mathematical model of an 
infinitely long conduit defined by two concentric 
curved circular pipes. Their results based on 
perturbation and spectral methods confirmed the 
earlier experimental findings that the influence of 
secondary flows on the dispersion was reduced if 
the tracer was very soluble in the wall. Sarkar and 
Jayaraman (2002) studied the effect of 
irreversible boundary reaction on the dispersion 
of tracers in annular flow using the generalized 
dispersion model. It was observed that the 
exchange and convection coefficient are 
enhanced while the dispersion coefficient is 
reduced with increase in the value of the 
absorption parameter. In their subsequent paper 
(2004) they studied the problem of dispersion 
with boundary absorption in an oscillatory 
annular flow. It was observed that the oscillatory 
flow arguments, the mass transfer and that an 
increase in the frequency parameter helps in the 
longitudinal dispersion of a solute. 

The dispersion with interphase mass 
transfer in non-Newtonian fluids was also 
investigated by a few authors. Siddeswar and 
Markande (1999) analysed the unsteady 
convective diffusion of a solute in a micropolar 
fluid in a circular pipe. Nagarani et al. (2004) 
studied the effect of non-Newtonian rheology on 
the dispersion of a solute in a Casson fluid with 
interphase mass transfer at the boundary using 
the generalized dispersion model. In a subsequent 
paper (2008) they extended their study to the 
effect of boundary absorption to Casson fluid in 
an annulus. Ramana (2011) studied the analysis 
of Nagarani and Sarojamma (2004, 2008) to 
Herschel-Bulkley fluid. 

Here  we make an attempt to analyse 
the effect of magnetic field on the dispersion of a 
solute in a conduit with interphase mass transfer 
at the outer boundary. Section 2 gives the 
mathematical formulation of the problem in pipe 
flow analysis with appropriate initial and 
boundary conditions. Section 3 presents the 
channel flow analysis. In section 4 the results are 
discussed on the effect of wall absorption 
parameter and magnetic field on the three 
dispersion coefficients viz., exchange, convection 
and dispersion coefficients and mean 
concentration. Conclusions are presented in 
section 5. 
 
2 PIPE FLOW ANALYSIS 
2.1 Mathematical Formulation 
Let us consider the dispersion of a bolus of solute 
that is initially distributed in a circular tube of 
radius ‘a’. The flow in the tube is considered to 
be axi- symmetric fully developed, steady, 
laminar and the fluid is Newtonian fluid. The non 
dimensional unsteady convective diffusion 
equation which describes the local concentration 
C of the solute as a function of axial coordinate z, 
radial coordinate r and time t can be written in the 
form  

C
zPe

L
z
Cw

t
C
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with the non-dimensional variables  
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where 
2L  = )(1

r
r

rr ∂
∂

∂
∂

, t is the non-

dimensional time, 0C  is the reference 
concentration, w is the non-dimensional axial 
velocity of the fluid in the axial direction z , 
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zd
pdaw

∞

−=
µ4

2

0 is the characteristic 

velocity, ∞µ  is the viscosity of the fluid, 
zd
pd

is the applied pressure gradient along the axis of 
the pipe, Dm is coefficient of molecular diffusion 
(molecular diffusivity) which is assumed to be 

constant and  Pe = 
mD

aw0 ,  Peclet number. The 

variables with bars represent the corresponding 
dimensional quantities. 
Initial and Boundary Conditions 
2.2 Initial Conditions 
At an instant of time, the amount of tracer left in 
the system, its convective velocity, and the extent 
of shear distribution depend upon the initial 
discharge. Following Sankarasubramanian and 
Gill (1973), we consider the initial distribution at 
t = 0 as the case when the solute of mass m is 
introduced instantaneously at the plane z = 0 
uniformly over the cross section of a circle of 
radius d (where 0 < d ≤ 1) concentric with the 
tube. Hence, in terms of non-dimensional 
quantities, the initial distribution assumed to be 
in a variable separable form is given by 

)()(),,0( rYzrzC ψ=        (3) 

with )(zψ = 
Ped
z

2

)(δ
        (4a) 

and )(rY =  1, 0 < r < d        (4b) 
      = 0, d < r < 1 
where )(zδ  is the Dirac delta function. 
2.3 Boundary conditions 
The general boundary condition at the wall can 
be written as 

1C
r
C ββ +−=
∂
∂

      (5a) 

This equation can be written in different  forms 
by selecting the constants appropriately , 

(i) Heterogeneous Chemical 
reaction of the first order (β1 = 
0) 

(ii) Non-equilibrium interphase 
(β1 = βCB, where CB is the 
surface concentration) 

(iii) Constant flux across the wall 
(β = 0) 

Boddington and Clifford (1983) considered the 
dispersion of a very reactive in a gas flowing in a 
circular quartz tube along with the irreversible 
loss of the reactive species of concentration C by 
heterogeneous reaction on the wall.  In this case 
the boundary condition at the tube wall is  

t
CC

r
C B

∂
∂

+−=
∂
∂

2ββ       (5b) 

where cB is the surface concentration satisfying  

B
B CC

t
C

432 βββ −=
∂
∂      (5c) 

where β2 is the ratio of the amount of  material 
absorbed to that in the fluid phase.  The constants 
β , β3, β4 respectively, account for the 
irreversible loss of absorption and desorption at 
the flow boundary. Jayaraman et al. (1998) 
studied the pattern of the dispersion and uptake of 
an inhaled slug of tissue soluble gas in a curved 
tube using a two phase model, with the 
appropriate boundary condition at the interface as  

r
C

r
C 1

2
6

1
1

5 ∂
∂

=
∂
∂

ββ        (5d) 

where 1
1C   and 1

2C  are the solute 
concentrations and β5 and β6 are the molecular 
diffusion coefficients in the two phases of the 
model.  At the interface a linear equilibrium 
relation was introduced so that 

 1
2C  = β7 1

1C       (5e) 
where β7 is the solubility coefficient. 

In the present model, we consider the boundary 
conditions 

)1,,()1,,( ztCzt
r
C β−=
∂
∂

    (6) 

where β  is the non-dimensional wall absorption 
parameter. 
As the amount of solute in the system is finite 

0),,(),,( =∞
∂
∂

=∞ rt
z
CrtC       (7)                             

and )0,,( ztC     = finite    (8) 
The velocity distribution for an axi-symmetric, 
fully developed, steady, laminar flow of a 
Newtonian fluid in a circular pipe under the 
influence of a transverse magnetic field in 
dimensionless form is 
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2.4 Method of Solution 
The convective diffusion equation (1) along with 
the initial and boundary conditions (3) and (6 - 8) 
is solved using the derivative expansion method 
developed by Sankarasubramanian and Gill 
(1973).  

n
m

n

n
n z

C
rtfC

∂
∂

= ∑
∞

=

),(
0

 (10 a) 

where the average concentration mC  is defined 
as 
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∫=
1

0

2 drrCCm   (10 b)         

Multiplying equation (1) by 2r and integrating 
with respect to r from 0 to 1, we obtain 

∫∂
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2 ),,(),(2)1,,(2
1 drrrztCrtw
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(11) 
Introducing (10 a) into (11), the following 
dispersion model for mC   is obtained as 

=
∂
∂

t
Cm  

n
m

n

n
n z

C
tK
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∞
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)(
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    (12) 

where  nK ’s are given by 

drrrtwrtft
r

f
Pe

tK n
nn

n ),(),(2)1,(2)(
1
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12

2, ∫ −−
∂
∂

+=
δ

  n = 0, 1, 2,… , f-1 = 0                                       
(13) 

2,nδ denotes the Kronecker delta. 
The equation (12) can be truncated after the term 
involving 2K .Thus the distribution of mean 

concentration mC , can be described by the 
generalized dispersion model as 

2

2

210 )()()(
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+=
∂
∂      (14) 

The absorption parameter  )(0 tK  arises due to 
the nonzero solute flux at the tube wall. This will 
be negative in this problem to account for the 
depletion of solute in the system with time 
caused by the irreversible reaction occurring at 
the tube wall. If the solute were to be generated at 
the wall according to first-order process, β  in 
equation (6) would assume negative sign and 
then the exchange coefficient )(0 tK would be 

positive. )(1 tK and )(2 tK  correspond to the 
convective and dispersion coefficients, 
respectively. The convection coefficient )(1 tK
accounts for the velocity of the reactive tracer 
and the dispersion coefficient )(2 tK  provides 
the modifications in the convective dispersion, 
occurring owing to absorption. 
Substituting (10a) in equation (1), using (12) and 

equating the coefficients of n
m

z
C

n

∂
∂

, n = 0, 1, 2, 

------,  gives the following set of  partial 
differential equations for nf  as 
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,  n = 0, 1, 2, .….                             (15) 
where  f-1 = f-2 = 0   
From equation (4), (6) to (8) we obtain the initial 
and boundary conditions on Cm and f n  as 
follows 

∫=
1

0

)()(2),0( drrrYzzCm ψ      (16a)  

gives     f0 (0, r)    = 

∫
1

0

)(2

)(

rdrrY

rY
               

  (16b)                  by setting   f n(0, r)    =   0,   n = 
1, 2…..              (16c) 
From equation (6) to (8), the boundary conditions 
are 

 )1,()1,( tft
r
f

n
n β−=

∂
∂ ,    n = 0,1, 2,….             

(16d)                             
 f n(t, 0)    =    finite        n = 0,1, 2,…    
           (16e)                                
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∂
∂

t
z
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(16f)      

0

1

0 2
1),( nn drrrtf δ=∫    for   n = 0, 1, 2….     

                
        (16g)        Since the equations (13) 
and (15) are coupled in order to determine the 
dispersion coefficient K2(t)  we need to obtain the 
pair of functions ( fn, Kn ),      n = 0,1,…., one 
after the other. 
 
Evaluation of f0 (t, r) and K0(t) 

The function f0 and exchange 
coefficient K0 are independent of velocity field 
and can be solved immediately. From (13) we 
have 

)1,(2)( 0
0 t

t
f

tK
∂
∂

=                           (17) 

To determine )(0 tK we have to first evaluate f0 

(t , r). Thus the equation for f0 may be written 
from equation (15) as  

00
00 )(1 Kf

r
f

r
rrt

f
−

∂
∂

∂
∂

=
∂
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        (18) 

The initial and boundary conditions on f0  are 
shown in equations (16 b, d, e) . 
From (16g) we have 

2
1),(

1

0
0 =∫ drrrtf          (19) 
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Using (17), the solution of   f0 (t, r)  satisfying the 
initial and boundary conditions  is given by  
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nµ ’s are the roots satisfying the transcendental 
equation  

)()( 01 nnn JJ µβµµ =    (n = 0, 1, 2……..) 
(21b) 
where 0J , 1J  are Bessel functions of orders zero 
and one, respectively. 
From equation (17) and (20) the exchange 
coefficient can be written as  
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nnnn

µµ
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which is exactly the same as derived by  
Sankarasubramanian and Gill (1973). 
 
Asymptotic Expansions for fn’s and Kn’s for n 
= 0, 1, 2, …… for steady flow 

It is necessary to determine the 
remaining functions fn introduced in equation 
(15) in order to generate the dispersion 
coefficient. However, owing to the coupling 
effect between fn(t, r) and Kn(t), the calculation 
of higher order dispersion coefficients and time 
dependent parts of the dispersion coefficients 
become tedious. Therefore, we will content 
ourselves with the asymptotic steady-state 
representations of fn(t, r) and Kn(t) for the case of 
steady flow, since these asymptotic values 
provide useful physical insight into the behaviour 
of the system. Hence, we will obtain solutions (fn, 
Kn), n = 0, 1, 2…… for large times, so that the 
dispersion model defined in (15) is a 
representation of the asymptotic  results under 
steady state conditions. 

As   t→ ∞ , equations (20) and  (22) 
give the following asymptotic representation for f 
0 and K0 : 

f0 (∞, r) = )(
)(2 00

01

0 rJ
J

µ
µ

µ
                         (23) 

K0 (∞)   = - 2
0µ         (24) 

where 0µ is the first  root of equation  (21b) with 
least magnitude.   

For large values of time, the steady state function 

nf (r) satisfies the equation 
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The boundary conditions on f n (r) are            
f n (0) = finite      )1(nf ′  = -β f n(1)    n = 1, 2, 
3,…………                                                          
(26) 
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For large times the equation (11) for Kn’s reduces 
to  
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( n =1, 2, 3…).The use of the solvability 
condition in equation (27) gives the expression 
for Kn as  
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=

1

1

n

i
applies for n ≥ 2. 

For n =1, the expression for the asymptotic 
convective coefficient K1 can be obtained as   
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                                                                       (30b) 
For large times, the differential equation for f1 
from equation (25) can be written as

0101
2
0

1 )()(1 fKfrwf
dr
dfr

dr
d

r
+=+ µ                      

                                                                        (31) 
The boundary conditions for f1 are  
f 1(0) = finite, )1()1( 11 ff β−=′             (32) 

and 0
1

0
1 =∫ drrf                                        (33)  
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The solution for f1 satisfying the corresponding 
boundary conditions (32) and (33) is obtained 
using equations (30) and (31) as          
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0

1 rJBrf n
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n µ∑
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=                       (34) 

From equation (34), with the help of the 
condition (33)  we get 
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Using equations (34) and (35), the expression for 

1f  can be written as  
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where nB ’s are given by                 
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7) 
Using (29), (36) and (37) the dispersion 
coefficient is obtained as 
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8)       (3.38) 
Solution for Mean Concentration 
         The mean concentration Cm is obtained 
from equation (14) with initial and boundary 
conditions given by (16a) and (16f) and is given 
by 
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dKzztz
0

11 )(),( ηη     
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dKt
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2 )()( ηηξ                   (42) 

4  CHANNEL FLOW ANALYSIS 
 Mathematical Formulation 

Let us consider the Cartesian co-

ordinate system ( zx, ), where x  denotes the 

transverse co-ordinate and z  denotes the axial 

co-ordinate to describe the dispersion of a solute 
in a Newtonian fluid flowing in a channel. 
Assume that the flow is steady, fully developed, 
laminar and axi-symmetric. The non-dimensional 
form of the unsteady convective diffusion 
equation for the dispersion of the solute in the 
channel flow, is given as 

C
zPez

cw
t
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 where 2∇ = 2

2
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∂

 and Pe = 
mD

aw0 ( Peclet 

number)                                              (44) 
 ‘a’ is half of channel width, and w0 is the 
characteristic velocity given by 
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pdaw
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2
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The initial and boundary conditions in the 
dimensionless form are   
   )()(),,0( xXzxzC ψ=             (46a) 

)1,,()1,,( ztCzt
r
C β−=
∂
∂                  (46b) 

 0),,(),,( =∞
∂
∂

=∞ xt
z
CxtC                 (46c) 

0)0,,( =
∂
∂ zt

x
C

                                   (46d) 

The velocity distribution for an axi-symmetric, 
fully developed, steady, laminar flow of a 
Newtonian fluid in a channel, in non- 
dimensional form, is obtained as  





 −=

M
xM

M
Pw

cosh
cosh12               (47) 

Method of Solution  
The unsteady convective diffusion 

equation (43) has to be solved for the local 
concentration C subject to the initial and 
boundary conditions (46) with axial velocity w 
given by equation (47). In the present analysis the 
mean concentration is defined as  

       ∫=
1

0

dxCCm                          (48) 

Following the same procedure as in the 
case of pipe flow analysis to find the solution for 
the problem, the expressions for Kn’s and fn’s are 
given by 

in

n

i
inn

nn fKf
Pe

frw
x
f

t
f

−
=

−− ∑−+−
∂
∂

=
∂
∂

0
2212

2 1)(

                                                  
                                 (49) 
where n = 0, 1, 2… 
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dxrfKxfxwxf
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K
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0

1

0
0

1

1
1220

1
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µ

µ

∫

∑∫ 







−−
=

−

−

=
−−  

, n = 1, 2 
……                                                            (50) 

and  
x
tfK

∂
∂

=
)1,(0

0                                            

(51) 
The initial and boundary conditions are given as  

f0 (0, x) = 

∫
1

0

)(2

)(

dxxX

xX
                        

              (52a) 
f n(0, x) = 0, n = 0,1,2…..                                           
       
                                          (52b) 

)1,()1,( tft
x
f

n
n β−=

∂
∂

,  n = 0,1,2,….        

(52c)  0)0,( =
∂
∂

t
x
f n ,  n = 0,1,2,…              

      (52d)   

 Cm(t, ∞) = 0),( =∞
∂
∂

t
z

Cm                             

(52e) 

0

1

0

),( nn dxxtf δ=∫                                       

(52f) 
Due to the change in the definition of Cm and the 
operator 2∇ , some minor modifications in the 
solvability condition and the expression for Kn, n 
= 0, 1, 2…. . are obtained. With out going into 
details again, the solutions for K0,  K1,   K2 and f0,  
f1 are written as given below: 

∑

∑
∞

−

∞
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0

0
0

2

2
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t
nnn
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exA
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∑

∑
∞

−

∞
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0

0
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2
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)sin(
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t
nnn

t
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n
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µµ
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where 

∫

∫
+

= 1

0

1

0
22

2

)(

)cos()(

)(cos
2

dxxX

dxxxX
A

n

nn

n
n

µ

µβµ
µ                                           

                                                                               
     (55) 
and nµ ’s are the roots of the equation 

     )(cos)(sin nnn µβµµ =              (56) 
The absorption, convection and dispersion 
coefficients are obtained for large times as in the 
case of pipe flow analysis. Hence, the asymptotic 
expansions for fn’s   and Kn’s for n = 0, 1, 2 in 
channel flow analysis are obtained as 
     

0

00
0 sin

)cos(),(
µ
µµ xxf =∞            (57) 

    )()( 01
2
00 µµµ >−=∞K             

(58)  

∫

∫
−= 1

0
00

1

0
00

1
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)cos()()(

dxxxf

dxxxfxw
K
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       = [ ]{ }3212 1 CCC
M
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(59b) 
where 
C1 = 

)cos(cosh
2

0
22

0

2
0

µβµ
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C2 = 
M

M
M

M
2

sinh
)4(

cos)cosh(2
22

00

0
2

0 +
+µµ

µβµ    (59d) 

C3 = 
)4(2

sinh)2cos(
22

0

0

M
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where  Bn’s are given by     
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0

1
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0

22

µ
µβµ
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∫ +

+

−=

                     

5.  RESULTS AND DISCUSSION 
The objective of the present analysis is 

to study the effect of magnetic field on the 
dispersion process following the injection of a 
chemically active tracer in a solvent flowing 
through a tube/channel with reactive boundary.  
Integrals involved in solving the transport 
coefficients are evaluated numerically using 
Simpson’s rule. It is observed that the exchange 
(absorption) coefficients K0 (t) is not influenced 
by magnetic field but depends on wall reaction 
parameter. Further, the asymptotic convection 
coefficient K1 and asymptotic dispersion 
coefficient K2 are dependent on magnetic field as 
well as wall absorption parameter β. In the 
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present study the value of the wall absorption 
parameter β is taken in the range of 0.01 to 100. 
The range for the Hartmann number M is taken 
as 1 - 3 
Asymptotic Exchange Coefficient K0 
The variation of  -K0 versus the absorption 
parameter β  for large times is described in Fig 1 
(a, b).  The magnitude of the exchange coefficient 
K0 increases steadily with β and attains 5.7 as β 
assumes very large value that is 100. When the 
absorption parameter takes very large values the 
reaction at the wall consumes material very 
rapidly than it can be supplied by molecular 
diffusion.  Thus the concentration at the wall 
becomes zero and the mass transport process in 
the system becomes diffusion controlled.  The 
corresponding variation of K0 versus β in channel 
case is presented in  Fig 1(b).  The qualitative 
behavior of –K0 is similar to that of the pipe case.  
The values of –K0 in channel are less than half of 
the values in the pipe flow. Thus it is inferred that 
the absorption of solutes at the boundary is more 
in pipe. 
Asymptotic Convection Coefficient K1 
Figs 2(a, b) describes the variation of negative 
asymptotic convection coefficient  – 1K  , versus 
the wall absorption parameter β for different 
values of  Hartmann number. The presence of 
magnetic field decreases the value of the 
asymptotic convection coefficient and they 
increase with the increase in the wall absorption 
parameter .The values of – 1K when M = 1 are 
reduced five times to that of the non-magnetic 
case. Increase in the Hartmann number further 
decreases the value of - 1K . When M = 3 the 

value of – 1K  is observed to be half of the 
corresponding value of the case when M = 1. The 
reason for the reduction is to deplete the solute in 
the slower moving wall region and the solute is 
weighed in the faster moving central region (in 
non-magnetic case) . Therefore, the solute is 
convected along at a velocity higher than the 
average flow velocity. The reduction in –K1 with 
increase in M is due to the reduction in the 
corresponding velocities.  The values of –K1 in 
channel flow analysis are higher than those of the 
pipe flow case.  
Asymptotic dispersion coefficient K2  
The asymptotic dispersion coefficient K2 (from 
which the additive contribution of the axial 

diffusion 2

1
Pe

 is deducted) in pipe and channel 

as a function of β for different values of M is 
presented in Figs 3(a, b).  It is observed that the 
axial dispersion is significantly decreased by the 
boundary reaction.  When     M = 1and β = 100 in 
pipe (channel) the dispersion coefficient is 

reduced by four (seven) times of the value 
corresponding to that of the case   β = 0.01. The 
corresponding reduction factor in the absence of 
magnetic field is also four (seven) times. This 
might be due to the smaller velocity gradients in 
the central region of the pipe than near the wall 
and larger velocity gradients across the solute 
distribution gives larger axial dispersion and 
hence the axial dispersion is decreased.  Also, 
transverse diffusion inhibits axial dispersion and 
larger transverse concentration gradients in the 
system with wall reaction tend to increase 
transverse diffusion and therefore decrease the 
axial dispersion coefficient.  The dispersion 
coefficients reduce predominantly with increase 
in the Hartmann number M.  When M = 1 
depending upon the wall reaction parameter say 
(0.01 to 100) the reduction factor in the 
dispersion coefficient is in the range (22.76 - 
23.32) in comparison to the values of the non 
magnetic case.  The corresponding reduction in 
channel varies in the range (8.33 - 8.78). The 
values of K2 in the limiting case as M→0 
correspond to the results of Sankarasubramanian 
and Gill (1973). Figs  4(a, b) describes the 
variation of 2K  verses Hartmann number. It is 
noticed that the dispersion coefficient in pipe 
(channel) flow analysis decreases with increase in 
Hartmann number and as M approaches 5 (4), 

2K  approaches the value zero. In this case flow 
becomes more plug like and the dispersion 
disappears. 
Mean Concentration 
                                                           The 
variation of mean concentration   Cm  as a 
function of the non-dimensional time for different 
values of the Hartmann number at z  = 0.5 is 
plotted in pipe (channel) in Fig 5(a, b). The 
profiles of the mean concentration are obtained 
from the solution of equation (39). 
 The mass transport coefficients in the 
expression for Cm are approximated by the 
corresponding asymptotic values.  The mean 
concentration Cm reduces with time due to the 
constant depletion occurring at the boundary of 
the pipe.  From 5(a), when M = 1, β = 0.01and z 
= 0.5 the peak value of mean concentration in 
pipe (channel) is 7.88 (6.07) while in the absence 
of magnetic field it is 3.85(3.54).  For small 
values of absorption parameter i.e., β = 0.01 in 
the absence of magnetic field the peak value of 
mean concentration is attained faster (t = 0.981) 
than that in the presence of magnetic field (t = 
4.63, M = 1).  In channel case they are attained 
much faster i.e.,        at   t = 0.73 in the absence of 
magnetic field it is at t = 2.08 when M = 1.  The 
peak value of mean concentration in pipe flow 
(channel) in the presence of magnetic field is 
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twice (almost twice) that of the value 
corresponding to that of the non-magnetic case. 
 From Fig  6(a, b) for higher values of 
absorption parameter that is        β = 1.0, the 
behavior is almost reversed i.e., in the absence of 
magnetic field the peak value of concentration is 
obtained faster than that of the corresponding 
case in the presence of magnetic field in both 
pipe and channel flow analyses.  The peak value 
of mean concentration in pipe (channel) flow 
analysis in the absence of magnetic field is 1.144 
(2.641) while in the presence of magnetic field M 
= 1 it is 0.017 (1.861). 
6. CONCLUSIONS 

The effect of magnetic field on the 
dispersion of a solute in a fluid flow with 
boundary retention effects in a conduit is 
discussed using the generalized dispersion model 
of Sankarasubramanian and Gill (1973).The 
dispersion process is described through the three 
transport coefficients i.e., exchange (absorption) 
coefficient, convection coefficient and dispersion 
coefficient. The absorption coefficient is seen to 
be independent of magnetic field. The convection 
coefficient is influenced by the magnetic field. It 
is observed that the negative asymptotic 
convection coefficient decreases with increase in 
magnetic field and increases with increase in the 
wall absorption parameter. The values of -K1 
when M = 1 are reduced five times that of the 
non-magnetic case. Increase in the Hartmann 
number further decreases the value of  -K1.The 
reduction in -K1 with increase in M is due to the 
reduction in the corresponding velocities owing 
to the Lorentz force. 
    The axial dispersion is significantly decreased 
by the boundary reaction. When M = 1 and β 
=100 in pipe (channel), the dispersion coefficient 
is reduced by four (seven) times of the value 
corresponding to that of the case                   β = 
0.01.The mean concentration Cm reduces with 
time due to the constant depletion taking place at 
the boundary. When M = 1, β = 0.01 and z = 0.5, 
the peak value of mean concentration in pipe 
(channel) is 7.88 (6.07) while in the absence of 
magnetic field it is 3.85 (3.54). In the absence of 
magnetic field the peak value is attained faster 
than that in the presence of magnetic field. But 
for higher value of absorption parameter that is β 
= 1, almost a reversed behavior is observed. The 
peak value of mean concentration in pipe 
(channel) flow analysis in the absence of 
magnetic field is 1.44 (2.641) while in the 
presence of magnetic field M = 1 it is 0.017 
(1.861). 

 

 
 
Fig 1Variation of negative asymptotic absorption 
coefficient –K0 with absorption parameter β in      
(a) Pipe (b) Channel 
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Fig 2 Variation of negative asymptotic 
convection coefficient –K1 with absorption 
parameter β for different values of M in  (a) Pipe 
(b) Channel 

 

 
        Fig 3 Variation of negative asymptotic 
dispersion             coefficient K2 – (1/Pe2) with 
absorption parameter β        for different values of 
M in  (c) Pipe (d)  Channel 

  

  
              Fig 4 Variation of negative asymptotic        
              dispersion coefficient K2 – (1/Pe2) with 
              Hartmann number M in  (a) Pipe (b) 
Channel 

 

 
 
Fig 5 Variation of mean concentration   Cm with 
time for different values of M when z=0.5 and 
β=0.01 (a) Pipe      (b) Channel 
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Fig 6 Variation of mean concentration   Cm with 
time for different values of M when z=0.5 and 
β=1 (a) Pipe          (b) Channel 
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